Lesson 3: Geographic Segmentation with Spatially Constrained Cluster Analysis

Published

December 4, 2022

Overview

Content

  • Basic concepts of geographic segmentation
  • Conventional cluster analysis techniques
  • Approaches for clustering geographically referenced data
    • Hierarchical clustering with spatial constraints
    • Minimum spanning trees

Hands-on Exercise

In-class Exercise Notes

Self-reading Before Meet-up

To read before class:

  • Assuncao, R. M., Neves, M.C., Camara, G. and Costa Freitas, C.D. 2006. “Efficient Regionalization Techniques for Socio-Economic Geographical Units Using Minimum Spanning Trees”. International Journal of Geographical Information Science 20: 797-811. (Available in SMU digital library)

  • Chavent, M., Kuentz-Simonet, V., Labenne,A. and Saracco, J. 2018. “ClustGeo: an R package for hierarchical clustering with spatial constraints” Computational Statistics, 33: 1799-1822. (Available in SMU digital library)

References

All About R